A hybrid model based on data preprocessing for electrical power forecasting
نویسندگان
چکیده
Electrical power forecasting plays a vital role in power system administration and planning. Inaccurate forecasting can lead to the waste of scarce energy resources, electricity shortages, and even power grid collapses. On the other hand, accurate electricity power forecasting can enable reliable guidance for the planning of power production and the operation of a power system, which is also important for the continued development of the electrical power industry. Although thousands of scientific papers address electricity power forecasting each year, only a small number are devoted to developing a general model for electricity power prediction that improves performance in different cases. This paper proposes a hybrid forecasting model for electrical power prediction that incorporates several artificial neural networks and model selection. To evaluate the forecasting performance of the proposed model, this paper uses half-hourly electrical power data of the State of Victoria and New South Wales of Australia as a case study. The experimental results clearly indicate that for this particular dataset, the forecasting performance of the proposed hybrid model is outstanding compared to that of the single forecasting model. 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Application of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets
Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...
متن کاملResearch and Application of a Hybrid Forecasting Model Based on Data Decomposition for Electrical Load Forecasting
Accurate short-term electrical load forecasting plays a pivotal role in the national economy and people’s livelihood through providing effective future plans and ensuring a reliable supply of sustainable electricity. Although considerable work has been done to select suitable models and optimize the model parameters to forecast the short-term electrical load, few models are built based on the c...
متن کاملResearch and Application Based on Adaptive Boosting Strategy and Modified CGFPA Algorithm: A Case Study for Wind Speed Forecasting
Wind energy is increasingly considered one of the most promising sustainable energy sources for its characteristics of cleanliness without any pollution. Wind speed forecasting is a vital problem in wind power industry. However, individual forecasting models ignore the significance of data preprocessing and model parameter optimization, which may lead to poor forecasting performance. In this pa...
متن کاملSecuring Cluster-heads in Wireless Sensor Networks by a Hybrid Intrusion Detection System Based on Data Mining
Cluster-based Wireless Sensor Network (CWSN) is a kind of WSNs that because of avoiding long distance communications, preserve the energy of nodes and so is attractive for related applications. The criticality of most applications of WSNs and also their unattended nature, makes sensor nodes often susceptible to many types of attacks. Based on this fact, it is clear that cluster heads (CHs) are ...
متن کاملA Data Mining approach for forecasting failure root causes: A case study in an Automated Teller Machine (ATM) manufacturing company
Based on the findings of Massachusetts Institute of Technology, organizations’ data double every five years. However, the rate of using data is 0.3. Nowadays, data mining tools have greatly facilitated the process of knowledge extraction from a welter of data. This paper presents a hybrid model using data gathered from an ATM manufacturing company. The steps of the research are based on CRISP-D...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016